An extremal problem in geodetic graphs
نویسندگان
چکیده
منابع مشابه
An Extremal Problem for Complete Bipartite Graphs
Define f(n, k) to be the largest integer q such that for every graph G of order n and size q, G contains every complete bipartite graph K u, ,, with a+h=n-k . We obtain (i) exact values for f(n, 0) and f(n, 1), (ii) upper and lower bounds for f(n, k) when ku2 is fixed and n is large, and (iii) an upper bound for f(n, lenl) .
متن کاملAn extremal problem for H-linked graphs
We introduce the notion of H-linked graphs, where H is a fixed multigraph with vertices w1; . . . ;wm. A graph G is H-linked if for every choice of vertices v1; . . . ; vm in G, there exists a subdivision of H in G such that vi is the branch vertex representing wi (for all i). This generalizes the notions of k -linked, k -connected, and k-ordered graphs. Given k and n 5k þ 6, we determine the l...
متن کاملDistinct edge geodetic decomposition in graphs
Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...
متن کاملAn extremal problem on group connectivity of graphs
Let A be an Abelian group, n ≥ 3 be an integer, and ex(n, A) be the maximum integer such that every n-vertex simple graph with at most ex(n, A) edges is not A-connected. In this paper, we study ex(n, A) for |A| ≥ 3 and present lower and upper bounds for 3 ≤ |A| ≤ 4 and an upper bound for |A| ≥ 5. © 2012 Elsevier Ltd. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1984
ISSN: 0012-365X
DOI: 10.1016/0012-365x(84)90112-2